Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Ecotechnol ; 21: 100399, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38469364

RESUMO

Chromate [Cr(VI)] contamination in groundwater is a global environmental challenge. Traditional elemental sulfur-based biotechnologies for Cr(VI) removal depend heavily on the synthesis of dissolved organic carbon to fuel heterotrophic Cr(VI) reduction, a bottleneck in the remediation process. Here we show an alternative approach by leveraging sulfur-disproportionating bacteria (SDB) inherent to groundwater ecosystems, offering a novel and efficient Cr(VI) removal strategy. We implemented SDB within a sulfur-packed bed reactor for treating Cr(VI)-contaminated groundwater, achieving a notable removal rate of 6.19 mg L-1 h-1 under oligotrophic conditions. We identified the chemical reduction of Cr(VI) via sulfide, produced through sulfur disproportionation, as a key mechanism, alongside microbial Cr(VI) reduction within the sulfur-based biosystem. Genome-centric metagenomic analysis revealed a symbiotic relationship among SDB, sulfur-oxidizing, and chromate-reducing bacteria within the reactor, suggesting that Cr(VI) detoxification by these microbial communities enhances the sulfur-disproportionation process. This research highlights the significance of sulfur disproportionation in the cryptic sulfur cycle in Cr(VI)-contaminated groundwater and proposes its practical application in groundwater remediation efforts.

2.
Water Res ; 249: 120898, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086206

RESUMO

Biological sulfide production processes mediated by sulfate/sulfur reduction have gained attention for metal removal from industrial wastewater (e.g., mine water (MW) and metallurgical wastewater) via forming insoluble metal sulfides. However, these processes often necessitate the addition of external organic compounds as electron donors, which poses a constraint on the broad application of this technology. A recent proof of concept study reported that microbial sulfur disproportionation (SD) produced sulfide with no demand for organics, which could achieve more cost-benefit MW treatment against the above-mentioned processes. However, the resistance of SD bioprocess to different metals and high sulfate content in MW remains mysterious, which may substantially affect the practical applicability of such process. In this study, the sulfur-disproportionating bacteria (SDB)-dominated consortium was enriched from a previously established SD-driven bioreactor, in which Dissulfurimicrobium sp. with a relative abundance of 39.9 % was the predominated SDB. When exposed to the real pretreated acidic MW after the pretreatment process of pH amelioration, the sulfur-disproportionating activity remained active, and metals were effectively removed from the MW. Metal tolerance assays further demonstrated that the consortium had a good tolerance to different metal ions (i.e., Pb2+, Cu2+, Ni2+, Mn2+, Zn2+), especially for Mn2+ with a concentration of approximately 20 mg/L. It suggested the robustness of Dissulfurimicrobium sp. likely due to the presence of genes encoding for the enzymes associated with metal(loid) resistance/uptake. Additionally, although high sulfate content resulted in a slight inhibition on the sulfur-disproportionating activity, the consortium still achieved sulfide production rates of 27.3 mg S/g VSS-d on average under an environmentally relevant sulfate level (i.e., 1100 mg S/L), which is comparable to those reported in sulfate reduction. Taken together, these findings imply that SDB could ensure sustainable MW treatment in a more cost-effective and organic-free way.


Assuntos
Metais Pesados , Águas Residuárias , Sulfatos/química , Água/química , Oxirredução , Bactérias/genética , Enxofre/química , Reatores Biológicos/microbiologia , Sulfetos/química
3.
Water Res ; 240: 120046, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224665

RESUMO

In sewer systems where anaerobic conditions are present, sulfate-reducing bacteria reduce sulfate to hydrogen sulfide (H2S), leading to sewer corrosion and odor emission. Various sulfide/corrosion control strategies have been proposed, demonstrated, and optimized in the past decades. These included (1) chemical addition to sewage to reduce sulfide formation, to remove dissolved sulfide after its formation, or to reduce H2S emission from sewage to sewer air, (2) ventilation to reduce the H2S and humidity levels in sewer air, and (3) amendments of pipe materials/surfaces to retard corrosion. This work aims to comprehensively review both the commonly used sulfide control measures and the emerging technologies, and to shed light on their underlying mechanisms. The optimal use of the above-stated strategies is also analyzed and discussed in depth. The key knowledge gaps and major challenges associated with these control strategies are identified and strategies dealing with these gaps and challenges are recommended. Finally, we emphasize a holistic approach to sulfide control by managing sewer networks as an integral part of an urban water system.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/análise , Esgotos/microbiologia , Sulfetos , Corrosão , Sulfatos
4.
Water Res ; 232: 119647, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738555

RESUMO

Biological sulfidogenic processes (BSPs) have been considered effective biotechnologies for the treatment of organic-deficit acid mine drainage (AMD) and heavy metal recovery. However, high-rate sulfide production relies on the continuous addition of exogenous organic substrates as electron donors to facilitate dissimilatory sulfate reduction, which substantially increases the operational cost and CO2 emission and also limits the wide application of BSPs in AMD treatment. In this study, we proposed a novel chemoautotrophic elemental sulfur disproportionation (SD) process as an alternative to conventional BSPs for treating AMD, in which sulfur-disproportionating bacteria (SDB) disproportionates sulfur to sulfide and sulfate without organic substrate supplementation. During the 393-day lab-scale test, we observed that the sulfur-disproportionating reactor (SDR) achieved a stable high-rate sulfide production, with a maximal rate of 21.10 mg S/L-h at an organic-substrate-free condition. This high rate of sulfide production suggested that the SD process could provide sufficient sulfide to precipitate metal ions from AMD. Thermodynamics analysis and batch tests further revealed that alkalinity rather than sulfate was the critical factor influencing the SD process, suggesting that the abundant sulfate present in AMD would not inhibit the SD process. The critical condition of SD in the SDR was therefore determined. Microbial community analysis showed that Dissulfurimicrobium sp. was the dominant SDB during the long-term operation regardless of dynamic sulfate and/or alkalinity concentrations, which provides evidence that SDB can be employed for sustainable and high-rate sulfide production for engineering purposes. A multi-stage AMD treatment system equipped with a SDR removed over 99% of the influent metals (i.e., Fe, Al, Zn, Cu, Pb) from AMD except for Mn. This study demonstrated that the novel SD process is a green and promising biotechnology for the sustainable treatment of organic-deficient metal-laden wastewater, such as AMD.


Assuntos
Reatores Biológicos , Metais Pesados , Reatores Biológicos/microbiologia , Oxirredução , Enxofre , Bactérias , Sulfetos , Sulfatos
5.
Water Res ; 202: 117373, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243051

RESUMO

Biochemical oxidation and reduction are the principle of biological water and wastewater treatment, in which electron donor and/or acceptor shall be provided. Elemental sulfur (S0) as a non-toxic and easily available material with low price, possesses both reductive and oxidative characteristics, suggesting that it is a suitable material for water and wastewater treatment. Recent advanced understanding of S0-respiring microorganisms and their metabolism further stimulated the development of S0-based technologies. As such, S0-based biotechnologies have emerged as cost-effective and attractive alternatives to conventional biological methods for water and wastewater treatment. For instance, S0-driven autotrophic denitrification substantially lower the operational cost for nitrogen removal from water and wastewater, compared to the conventional process with exogenous carbon source supplementation. The introduction of S0 can also avoid secondary pollution commonly caused by overdose of organic carbon. S0 reduction processes cost-effectively mineralize organic matter with low sludge production. Biological sulfide production using S0 as electron acceptor is also an attractive technology for metal-laden wastewater treatment, e.g. acid mine drainage. This paper outlines an overview of the fundamentals, characteristics and advances of the S0-based biotechnologies and highlights the functional S0-related microorganisms. In particular, the mechanisms of microorganisms accessing insoluble S0 and feasibility to improve S0 bio-utilization efficiency are critically discussed. Additionally, the research knowledge gaps, current process limitations, and required further developments are identified and discussed.


Assuntos
Reatores Biológicos , Purificação da Água , Desnitrificação , Elétrons , Nitratos , Nitrogênio , Enxofre , Águas Residuárias , Água
6.
Water Res ; 185: 116230, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32784032

RESUMO

Elemental sulfur-driven sulfidogenic process has been demonstrated to be more economical and energy-efficient than sulfate-driven sulfidogenic process when treating metal-laden wastewater. In previous studies, we observed that the polysulfide-involved indirect sulfur reduction ensured the superiority of sulfur over sulfate as the electron acceptor in the sulfidogenic process under neutral or weak-alkaline conditions. However, realizing high-rate sulfur reduction process for acid mine drainage (AMD) treatment without pH amelioration is still a great challenge because polysulfide cannot exist under acidic conditions. In this study, a laboratory-scale sulfur-packed bed reactor was therefore continuously operated with a constant sulfate concentration (~1300 mg S/L) and decreasing pH from 7.3 to 2.1. After 400 days of operation, a stable sulfide production rate (38.2 ± 7.6 mg S/L) was achieved under highly acidic conditions (pH 2.6-3.5), which is significantly higher than those reported in sulfate reduction under similar conditions. In the presence of high sulfate content, elemental sulfur reduction could dominate over sulfate reduction under neutral and acidic conditions, especially when the pH ≥ 6.5 or ≤ 3.5. The decreasing pH significantly reduced the diversity of microbial community, but did not substantially influence the abundance of functional genes associated with organic and sulfur metabolisms. The predominant sulfur-reducing genera shifted from Desulfomicrobium under neutral conditions to Desulfurella under highly acidic conditions. The high-rate sulfur reduction under acidic conditions could be attributed to the combined results of high abundance of Desulfurella and low abundance of sulfate-reducing bacteria (SRB). Accordingly, sulfur reduction process can be developed to achieve efficient and economical treatment of AMD under highly acidic conditions (pH ≤ 3.5).


Assuntos
Reatores Biológicos , Microbiota , Mineração , Oxirredução , Sulfatos , Enxofre
7.
Water Res ; 169: 115084, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669906

RESUMO

Elemental sulfur-driven autotrophic denitrification (SADN) is a cost-effective approach for treating secondary effluent from wastewater treatment plants (WWTPs). Additional organics are generally supplemented to promote total nitrogen (TN) removal, reduce nitrite accumulation and sulfate production, and balance the pH decrease induced by SADN. However, understanding of the impacts of organic supplementation on microbial communities, nitrogen metabolism, denitrifier activity, and SADN rates in sulfur-based denitrification reactors is still limited. Here, a sulfur-based denitrification reactor was continuously operated for 272 days during which six different C/N ratios were tested successively (2.7, 1.5, 0.7, 0.5, 0.25, and 0). Organic supplementation improved TN removal and decreased NO2- accumulation, but reduced the relative abundance of denitrifiers and the contribution of autotrophic nitrate-reducing bacteria (aNRB) to TN removal during the long-term operation of reactor. Predictive functional profiling showed that nitrogen metabolism potential increased with decreasing C/N ratios. SADN was the predominant removal process when the C/N ratio was ≤0.7 (achieving 60% contribution when C/N = 0.7). Although organic supplementation weakened the dominant role of aNRB in denitrification, batch tests for the first time demonstrated that it could accelerate the SADN rate, attributed to the improvement of sulfur bioavailability, likely via the formation of polysulfide. A possible nitrogen removal pathway with multiple electron donors (i.e., sulfur, organics, sulfide, and polysulfide) in a sulfur-based denitrification reactor with organic supplementation was therefore proposed. However, supplementation with a high level of organics could increase the operational cost and effluent concentrations of sulfide and organics as well as enrich heterotrophic denitrifiers. Moreover, microbial community had substantial changes at C/N ratios of >0.5. Accordingly, an optimal C/N ratio of 0.25-0.5 was suggested, which could simultaneously minimize the additional operating cost associated with organic supplementation and maximize TN removal and SADN rates.


Assuntos
Reatores Biológicos , Desnitrificação , Processos Autotróficos , Suplementos Nutricionais , Nitratos , Nitrogênio , Enxofre
8.
Front Pharmacol ; 10: 1361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798456

RESUMO

Ma Xing Shi Gan Decoction (MXD), a classical traditional Chinese medicine prescription, is widely used for the treatment of upper respiratory tract infection. However, the effect of MXD against particulate matters with diameter of less than 2.5 µm (PM2.5) induced lung injury remains to be elucidated. In this study, rats were stimulated with PM2.5 to induce lung injury. MXD was given orally once daily for five days. Lung tissues were harvested to assess pathological changes and edema. Myeloperoxidase (MPO) activity and malonaldehyde (MDA) content in lung were determined to evaluate the degree of injury. To assess the barrier disruption, the bronchoalveolar lavage fluid (BALF) was collected to determine the total protein content and count the number of neutrophils and macrophages. For evaluating the activation of macrophage in lung tissue, CD68 was detected using immunohistochemistry (IHC). The levels of inflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß), and interleukin-6 (IL-6) in BALF and serum were measured. In vitro, a PM2.5-activated RAW 264.7 macrophages inflammatory model was introduced. To evaluate the protective effect of MXD-medicated serum, the cell viability and the release of inflammatory factors were measured. The effects of MXD on the High mobility group box-1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NFκB) pathway in lung tissue and RAW 264.7 cells were assessed by Western blot. For further confirming the protective effect of MXD was mediated by inhibiting the HMGB1/TLR4/NFκB pathway, RAW 264.7 cells were incubated with MXD-medicated serum alone or MXD-medicated serum plus recombinant HMGB1 (rHMGB1). MXD significantly ameliorated the lung injury in rats, as evidenced by decreases in the pathological score, lung edema, MPO activity, MDA content, CD68 positive macrophages number, disruption of alveolar capillary barrier and the levels of inflammatory factors. In vitro, MXD-medicated serum increased cell viability and inhibited the release of inflammatory cytokines. Furthermore, MXD treatment was found to inhibit HMGB1/TLR4/NFκB signal pathway both in vivo and in vitro. Moreover, the protection of MXD could be reversed by rHMGB1 in RAW 264.7. Taken together, these results suggest MXD protects rats from PM2.5 induced acute lung injury, possibly through the modulation of HMGB1/TLR4/NFκB pathway and inflammatory responses.

9.
J Cardiovasc Pharmacol ; 74(5): 379-388, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730559

RESUMO

Recent reports have established atherosclerosis (AS) as a major factor in the pathogenetic process of cardiovascular diseases such as ischemic stroke and coronary heart disease. Although the possible pathogenesis of AS remains to be elucidated, a large number of investigations strongly suggest that the inhibition of toll-like receptors (TLRs) alleviates the severity of AS to some extent by suppressing vascular inflammation and the formation of atherosclerotic plaques. As pattern recognition receptors, TLRs occupy a vital position in innate immunity, mediating various signaling pathways in infective and sterile inflammation. This review summarizes the available data on the research progress of AS and the latest antiatherosclerotic drugs associated with TLR pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Receptores Toll-Like/antagonistas & inibidores , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
10.
J Ethnopharmacol ; 207: 57-66, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28645780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Danshen is a crude herbal drug isolated from dried roots of Salvia miltiorrhiza Bunge. This plant is widely used in oriental medicine for the treatment of cardiovascular and cerebrovascular diseases. The supercritical CO2 extract from Danshen (SCED) (57.85%, 5.67% and 4.55% for tanshinone IIA, tanshinone I and cryptotanshinone respectively) was studied in this article, whose potential molecular mechanism remains unclear, especially in anti-thrombosis. AIM OF THE STUDY: The present study was designed to observe the protective effect of SCED on ischemic stroke in rats and to explore the underlying anti-thrombosis mechanism. MATERIALS AND METHODS: Following induction of cerebral ischemia in rats by permanent middle cerebral artery occlusion (pMCAO). Neurological defect score, cerebral blood flow, infarct size, and brain edema were measured to evaluate the injury. Arteriovenous shunt thrombosis model and adenosine 5'-diphosphate (ADP) induced acute pulmonary embolism model were conducted to estimate the antithrombotic effect of SCED. In order to investigate the effects of SCED on platelet aggregation, rat platelet-rich-plasma (PRP) were incubated with SCED prior to the addition of the stimuli (ADP or 9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α (U46619)). Aggregation was monitored in a light transmission aggregometer. Inhibitory effect of SCED on thromboxane A2 (TXA2) release was detected by ELISA kit. Phospholipase C (PLC)/ Protein kinase C (PKC) signaling pathway was analyzed by a Western blot technique. The effect of the SCED was also studied in vivo on bleeding time in mice. RESULTS: SCED improved the neurological defect score, increased cerebral blood flow, reduced infarct size and alleviated brain edema in rats exposed to pMCAO. After administration of SCED, thrombosis formation in arteriovenous shunt was inhibited and recovery time in pulmonary embolism was shortened. The inhibitory effect of SCED on platelet activation was further confirmed by TXB2 ELISA kit and Western blot analysis of PLC/PKC signaling pathway. CONCLUSIONS: SCED attenuates cerebral ischemic injury. The possible mechanism is that SCED inhibits thrombosis formation, platelet aggregation and activation of PLC/PKC pathway. On this basis, this new extract could be a promising agent to inhibit thrombosis formation and protect against cerebral ischemia injury.


Assuntos
Isquemia Encefálica/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Salvia miltiorrhiza/química , Acidente Vascular Cerebral/prevenção & controle , Animais , Western Blotting , Modelos Animais de Doenças , Feminino , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ativação Plaquetária/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Trombose/tratamento farmacológico , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...